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A new program—ProMoCS—is presented for the simulation of dynamic nuclear magnetic resonance spec-
tra. Its algorithm is based on the Monte Carlo method as the one of the previously introduced MC-DNMR
but the theory of ProMoCS is explained by using the statistical approach of propagator formalism. Our
new program is suitable for the calculation of dynamic NMR spectra of spin systems up to 12 ½ spin
nuclei, several conformers and any type of exchange between them. Mutual exchange of coupled spins
can be simulated as well. While it keeps the main advantage of the Monte Carlo based method: calcula-
tion with significantly smaller matrices as compared with programs based on the simulation of the aver-
age density matrix, the maximum number of nuclei is increased significantly. Thus spectra of such
systems can be simulated that was impossible previously.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Methods for the simulation of dynamic NMR spectra are well-
known for systems with chemical exchange [1–7]. The most wide-
spread simulation programs (DNMR5 [8–11], MEXICO [12–14],
WinDNMR [15–16], Bruker’s TOPSPIN DNMR module [17]) are
based on the calculation of transitions using the average density
matrix. The most important limitation of this method is the huge
computer memory requirement even for simple spin systems. In
the case of a spin system with n nuclei and s conformers the
dimension of the coefficient matrix is proportional to s�4n. This ma-
trix blocks according to the coherence levels and these blocks are
treated separately. The blocks with smaller sizes, the neglection
of combinational transitions and the use of sparse matrix diagonal-
ization methods [18–19] can reduce the computer memory
requirement radically, but the reduced matrix still can be too big
for more complicated spin systems.

Our MC-DNMR program based on the theory of Monte Carlo
simulations was introduced as alternative simulation algorithm
with less memory requirement previously [20]. The theory of that
program was based on the extension of single spin vector model to
coupled spin systems, by which the chemical exchange could be
incorporated into the vector model. The memory requirement of
this program is significantly smaller than that of the programs
mentioned above. However, in cases of scalar coupling between
the exchanging sites the simulated high temperature spectrum
yields in non-realistic multiplets.
ll rights reserved.

zy).
In order to correct this error the theoretical background of the
Monte Carlo simulations of DNMR spectra is now presented using
the propagation of individual density matrices. A new program
called ProMoCS (Propagation & Monte Carlo Simulation) was writ-
ten which gives correct results even in cases where MC-DNMR
fails.

2. Theoretical background

The well-known method for the simulation of dynamic NMR
spectra is based on the solution of Liouville–von Neumann equa-
tion [21]:

d�q
dt
¼ �i½H; �q�: ð1Þ

As a first step this equation is converted into the Liouville space.
This means that the average density matrix (�q, function of t time)
becomes a vector (�r) and its commutator with the Hamiltonian
(H) transform to a superoperator (�L):

d�r
dt
¼ �i�L�r: ð2Þ

In order to describe the relaxation and dynamic processes two addi-
tional terms are included: the Redfield-type relaxation (R) and the
exchange (X) matrices, resulting in:

d�r
dt
¼ �ði�Lþ Rþ XÞ�r: ð3Þ

The solution of this equation gives the evolution of the density ma-
trix as a function of the time elapsed as:

�rðtÞ ¼ expð�ði�Lþ Rþ XÞÞ�r0; ð4Þ
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where �r0 is the density matrix at the start of detection (t = 0). From
now the relaxation is approximated with the multiplication of the
time domain signal with an exponential at the end of the calcula-
tion so the matrix R can be neglected in Eq. (4). The signal (fid) is
then calculated as the scalar product of the density matrix and
the vector of the I+ operator:

fidðtÞ ¼ Iþj�rðtÞ
� �

: ð5Þ

The average density matrix calculated by this method describes the
average of molecular states in the whole system. This means that all
sites are included in it (Fig. 1a). Spins are distinguished by their
chemical environment (and chemical shift) and not by the individ-
ual nucleus they belong to. The coefficients in the density matrix
represent the populations of the coherences.

For our purposes we define the individual density matrix (q or
r). This matrix describes the probabilities of the possible spin
states of the nuclei in one individual molecule. From now we
use the name spin set for these nuclei. In an exchanging system
a given spin set can change its chemical environment but the
nuclei remain together in it. In different chemical environments
the density matrix evaluates differently (e.g. the Hamiltonian de-
pends on the chemical environment). As molecules can convert
into each other at any time, the chemical environments, Hamil-
tonians and propagators of spin sets are permuted randomly in
time.

The fid of a spin set can be calculated from its own density
matrix as it is shown later. The sum of the fids of a few hundreds
or thousands of randomly selected spin sets gives the overall fid
which is a good approximation of the macroscopic signal (Monte
Carlo method).

In order to construct the algorithm of the simulation the follow-
ings should be given: the method for the determination of the life-
times of the conformers and the mathematical forms of the
operators of precession, detection and exchange.

The time of an exchange (to be called exchange points and
noted as tr) is determined statistically based on the rate coefficients
of the exchanges. The lengths of intervals between two exchange
points (time slices) have exponential distribution with the average
lifetime (si) of the molecule as its parameter [20]:
Fig. 1. Propagation of the (a) average (b) individual density matrix. Ticks show the points
As an example, the propagators (P and PAB, PCD) of an exchanging AB M CD spin system
trþ1 � tr ¼ �si lnðrndÞ ¼ �
X

j

kij

 !�1

lnðrndÞ; ð6Þ

where rnd is a random number and kij is the rate coefficient of the
exchange from molecule i to j.

During an exchange, which is assumed to happen in negligible
time (instant jump approximation), the spin set remains unaltered,
only the chemical environment and its parameters like chemical
shift and coupling constants of the corresponding nucleus alter.
This affects only the precession operator but not the density matrix
(Fig. 1b). As a consequence the precession operator of the r-th time
slice has to be replaced by a new one according to the new state in
time slice r + 1 at the beginning of the (r + 1)th time slice (e.g.
replace PAB with PCD at t1 for r = 1 on Fig. 1b). After the exchange
the simulation for time slice r + 1 is continued using r(r) (the den-
sity matrix at tr).

The fid of the r-th time slice for one molecule is calculated at the
detection points that fall into the corresponding interval. If the
rates of exchanges are so fast, that there are more than one ex-
change points between two sampling points, there must be time
slices without sampling point. In the case of such ‘dummy’ slices
only the density matrix is propagated to the end of this time slice.
The fid of the spin set (scan) is the union of the fids of the time
slices and the spectrum of the whole system is calculated as the
Fourier transform of the sum of the scans. This method is described
in detail in Ref. [20].

As the exchange is handled as a propagating effect of the den-
sity matrix, the whole exchanging spin system (including the spins
of all conformers) can be simulated by calculating with only one
static (only J-coupled) spin set. Therefore the basis set used for
the simulation is made of the basis functions of one spin set. The
size of basis set is �2n where n is the number of nuclei in the spin
set. In fact the Hamiltonian, the density matrix and the precession
operator blocks according to the coherence levels and the size of

the largest block is only n
n=2

� �
. This size still means an exponen-

tially scaling memory requirement but is significantly smaller than
the memory needed for the conventional calculations [8–17] using
density matrix blocks. The RAM requirement of the program is
independent of the number of exchanging sites.
of detection (where fid points are calculated) and dots show the points of exchange.
are shown for both calculations.
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3. Mathematical formalism

Theoretical calculations are performed in the subspace of the
Liouville space expanded by the one-quantum coherences of the
spin set. In this space ue denotes the e-th basis transition (e is in
the range 1. . .22n). The eigenfunctions of the L matrix (where
Lr ¼ ½H; q�) of the spin system are noted by wp and xp denotes
the eigenvalue of the Hamiltonian with wp.

The eigenfunctions can be written as the linear combination of
basis functions:

wp ¼
X

e

cepue: ð7Þ

It comes from Eq. (7) that the cep coefficients can be given as the
scalar product of a basis and an eigenfunction (the cep coefficients
are real; therefore the scalar product is symmetrical):

cep ¼ uejwp

� �
¼ wpjue

� �
: ð8Þ

The global time t denotes the time elapsed since the start of detec-
tion (t = 0 is the start of detection after the 90� pulse). The points of
exchange are denoted as tr, and Dt is the time elapsed since the last
exchange (Dt = t � tr). The length of time slice r is denoted as
Dtr ¼ tr � tr�1. The density matrix is r(t) at point t and r(r) is the
short form for r(tr).

3.1. Precession (propagation)

The operator of precession is specific for the molecular state and
is only valid inside one time slice. The propagation with Dt at a gi-
ven state can be performed with the operator P defined as (see Ref.
[21]):

PðDtÞ ¼ expðiLDtÞ: ð9Þ

In this case the propagation is always performed from the beginning
(tr � 1) of the actual time slice (r).

Using the wp eigenfunctions of the L operator the mathematical
form of the propagation operator can be written as:

PðDtÞ ¼
X

p

wp

�� �
expðixpDtÞ wp

� ��: ð10Þ

The density matrix can be expressed as the linear combination of
the ue basis set of the Liouville space:

jrðtÞi ¼
X

e

jueihuejrðtÞi ¼
X

e

reðtÞjuei; ð11Þ

where the e-th element of the r(t) vector (e.g. re(t)) is denoted as:

reðtÞ ¼ uejrðtÞh i: ð12Þ

The density matrix r(t) at time t can be calculated by multiplying
the vector in Eq. (11) with the operator in Eq. (10):

jrðtÞi ¼ PðDtÞjrðrÞ
�
¼
X
p;e

jwp

�
expðixpDtÞ wpjue

� �
uejrðrÞ
� �

: ð13Þ

Replacing the scalar products with the coefficients defined in Eq.
(8), the f-th element of the r(t) vector (rf(t)) is given according to
the Eq. (12) as:

rf ðtÞ ¼
X
p;e

cfpcep expðixpDtÞrðrÞe : ð14Þ
3.2. Detection

At time point t the signal given by a molecule can be deter-
mined by the scalar product of the density matrix (r(t)) and the
I+ operator:
fidðtÞ ¼ IþjrðtÞ
� �

: ð15Þ

The fid points are complex numbers representing the expectation
value of the momentary magnetization vector. The density matrix
at time point t can be calculated from the one at last exchange
(r(r)) according to the Eq. (13) and the detected signal at time point
t is given as (Dt = t � tr):

fidðtÞ ¼
X
p;e

Iþjwp

� �
expðixpDtÞ wpjue

� �
uejrðrÞ
� �

: ð16Þ

Replacing the scalar products with the coefficients defined in Eq. (8)
yields in:

fidðtÞ ¼
X
p;e

apcep expðixpDtÞrðrÞe : ð17Þ

where ap denotes the intensity of the signal given by eigenfunction
wp:

ap ¼ Iþjwp

� �
; ð18Þ

The density matrix at the beginning of the detection (t = 0) is also
required for the simulation. In a one-pulse experiment there is only
transversal magnetization in the system after the 90� pulse. The
density matrix of this state is proportional to the vector of the I+

operator on the basis of the ue basis functions (meaning that
re = 1 if the one-spin transition ue is allowed and is 0 otherwise).

The overall fid (F) is calculated as the sum of fids of individual
scans as:

FðtÞ ¼
X
scans

[
r

fidðtÞ ¼
X
scans

[
r

X
e;p

apcep expðixpDtÞrðrÞe ; ð19Þ

where the symbol
S

denotes the union of fids in the time slices [20].

3.3. Exchange

The following criteria are taken into consideration for an ex-
change reaction (at time point tr):

� during the exchange the basis functions (ue) remain unaltered,
� the exchange takes place in negligible time (instant jump

approximation) thus the density matrix also remains unaltered
during the exchange.

Due to the exchange the L operator alters and thus the eigen-
functions (wp) and precession frequencies (xp) are different before
and after it. It means that the density matrix should be calculated
at the time point tr + 1 (using the precession operator of the time
slice r) and from that moment the new density matrix should be
used for detection (see Eq. (17)) and the next propagation (see
Eq. (14)).

To propagate the density matrix to the next exchange point
(tr + 1) the variable Dt = t�tr should be replaced by Dtr = tr + 1 � tr

in Eq. (14):

rðrþ1Þ
f ¼

X
p;e

cfpcep expðixpDtrÞrðrÞe : ð20Þ

The fid in time slice r + 1 is calculated from this r(r + 1) vector
(instead of r(r)) according to the Eq. (17).

3.4. Propagation in Hilbert space

In the previous paragraph the mathematical background of
the propagation was shown in the Liouville space which means
that the size of the precession operator is approximately 24n. It
can also be solved in the Hilbert space as well since the Hamil-
tonian of the system is real and time-independent inside the
time slices.
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In the previous section the Liouville–von Neumann equation
(Eq. (1)) was solved by transforming the commutator into the Liou-
ville space (as L operator) and solving the resulting linear differen-
tial equation. Instead of that the following solution of Eq. (1) will
be used now (see Ref. [22]):

q̂ðtÞ ¼ expð�iĤtÞq̂ð0Þ expðiĤtÞ: ð21Þ

This solution is only valid when the Hamiltonian is constant be-
tween time points 0 and t [5]. In this case exchange is handled sep-
arately (by Monte Carlo method) and therefore the Hamiltonian
does not change inside time slices. This means that the precession
can be simulated using the operation given in Eq. (21).

The exponential of the Hamiltonian is diagonal on the basis of
the eigenfunctions of the same Hamiltonian (Wl, with eigenvalue
kl) which means that:

expð�iĤtÞ ¼
X

l

Wlj i expð�ikltÞ Wlh j: ð22Þ

The Wk eigenfunctions of the Hamiltonian can be expressed as
linear combinations of the common product basis functions
(a. . .aa, a. . .ab, . . ., b. . .bb, noted Ua where a = 1. . .2n and n is the
number of spins in the non-exchanging system):

Wk ¼ uakUa where uak ¼ UajWkh i ð23Þ

The matrix of the uak coefficients (U) is real and unitary. Substitut-
ing Eq. (22) into Eq. (21) and taking the matrix form of the operators
gives:

qðtÞ ¼ U expð�iKDtÞUTqðrÞU expðiKDtÞUT ; ð24Þ

where K denotes the diagonal matrix of the kk eigenvalues of H and
UT is the transpose of the real unitary matrix U. Eq. (24) shows the
calculation of the matrix q(t) knowing q(r) (Dt = t � tr, meaning the
time elapsed since the last exchange).

Replacing the matrix multiplication with the corresponding
coefficients in Eq. (24) and rearranging terms give the following
equation for the density matrix (using the notation qab for the ma-
trix elements of q):

qabðtÞ ¼
X
c;d;k;l

uakubl � uckudl � expðiðkl � kkÞDtÞqðrÞcd : ð25Þ

Eqs. (25) and (14) give the same result, which can be proven if we
substitute the p, f and e (as hyperindices) with (k,l), (a,b) and (c,d),
respectively and knowing that cfp = uakubl, cep = uckudl and
xp = kl � kk.

The expression for detection can be derived from Eq. (24):

fidðtÞ ¼ TrðqðtÞ̂IþÞ

¼ TrðU expð�iKDtÞUTqðrÞU expðiKDtÞUT ÎþÞ: ð26Þ

Rearranging this expression gives:

fidðtÞ ¼ TrððUT ÎþUÞ expð�iKDtÞUTqðrÞU expðiKDtÞÞ; ð27Þ

and denoting the expression between the first inner parentheses in
Eq. (27) with A gives:

fidðtÞ ¼ TrðA expð�iKDtÞUTqðrÞU expðiKDtÞÞ: ð28Þ

The physical meaning of the (k,l) element of the A matrix (akl) is the
intensity of the Wl ? Wk transition. Replacing the matrices with
their elements in Eq. (28) gives:

fidðtÞ ¼
X
c;d;k;l

akluckudl expð�iðkl � kkÞDtÞqðrÞcd ; ð29Þ

which is the Hilbert space equivalent of Eq. (17), the formula of
detection in Liouville space. The overall fid (F) is calculated as the
sum of fids of individual scans as:
FðtÞ ¼
X
scans

[
r

fidðtÞ

¼
X
scans

[
r

X
c;d;k;l

akluckudl expðiðkl � kkÞDtÞqðrÞcd ; ð30Þ

where the symbol
S

denotes the union of fids in the time slices [20].
It is well-known that the Hamiltonian blocks according to the

total spin quantum numbers (to be called levels) which means that
each eigenvector belongs to the subspace spanned by basis vectors
of the same level. Neither the precession nor the exchange can
combine functions of different levels therefore the blocks of the
density matrix can be handled separately and only the DI = 1
blocks have to be calculated. This reduces the RAM requirement

of the calculation to n
n=2

� �2

, the size of the simulations in the

Hilbert space.

4. Comparison of the propagator based and the extended vector
models

The formula for the precession was the following (using the
notations defined here) in our previous, extended vector model
based MC-DNMR program (see Eq. (23) in Ref [20]):

rðrþ1Þ
e ¼

X
p

c2
ep expðixpDtrÞrðrÞe ð31Þ

Comparing Eqs. (31) and (14) shows that only the diagonal part of
the exact precession operator is taken into account in the extended
vector model (further on XVM) introduced there. According to the
XVM the probability of frequency xp for basis transition ue is c2

ep

at any time. XVM also assumes that the basis state (ue) is conserved
during precession thus the frequency distribution is valid on a
whole time interval. On the other side, in the new model based
on the propagator formalism (further on PM) the propagators eval-
uate the basis functions according to the Hamiltonian as probabili-
ties but the frequencies are only used as technical values to perform
calculations. If we try to explain the PM based Eq. (14) in the XVM
we get that the probability of frequency xp for basis transition ue is
c2

ep at any time as well, but the basis transition is not preserved in
time intervals of precession.

In PM the magnetization (or the vector) on ue at tr (rðrÞe ) can end
in any basis state at tr + 1. The transition from ue to uf is done
through eigenstates and its probability is given by the coefficients
c2

epc2
fp. This transition is explained on Fig. 2. At a given point of time

a state in the vector model can be handled based on its basis state
or on its eigenstate. These two states exist independently all the
time (only their distribution is defined). During exchange the basis
state, while during precession the eigenstate is preserved. There-
fore the precession and exchange operators have effects on the dif-
ferent representations. XVM handles this duality with probabilities
as well as PM. Both models calculate the probability of a molecule
being in an eigen or in a basis state (equals to the square of the cor-
responding density matrix element) and the two probabilities are
connected through the cep linear combination coefficients (dots
on the arrows on Fig. 2 or the scalar product wpue

� �
in Eq. (13)).

Using the XVM model Eq. (13) describes the following process
(from the exchange at time tr � 1): the exchange operator gives
the density matrix in the product basis form at time tr � 1 (Fig. 2
segment Xr � 1). To perform precession the density matrix has to
be converted to the eigenfunction representation (Fig. 2 segment
Pr � 1) and in this form the detected fid points and the density ma-
trix can easily be calculated at tr. For the exchange ‘operator’ the
density matrix should be converted back to basis function repre-
sentation (segment Xr) and the same process starts from the begin-
ning (segments Pr and Xr + 1). The most important difference
between the two models is that in XVM the system still ‘remem-
bers’ its basis state at tr before the exchange at tr + 1 (e.g. gray dots



Fig. 2. Comparison of the transition models (a) PM and (b) XVM. In both models the population of basis states (see spots on lines) is transferred to eigenstates (and vice versa)
based on the linear combination coefficients (spots on arrows). The difference between the two models is that while in the case of the XVM model the magnetization of u1

transition at tr � 1 returns to u1 at tr through w1 (and through w2 as well), in the case of the PM model basis functions can alter during precession.
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always belong to u2 coherence on Fig. 2b) while in PM the basis
state is not preserved. Correcting Eq. (31) with the neglection of
the preservation of basis state gives the formula of Eq. (14).

Usually the two methods yield similar spectra except in systems
where J-coupling occurs between the exchanging sites. In this case
the high temperature spectrum simulated by the program based
on the XVM (MC-DNMR) is wrong but the one calculated by Pro-
MoCS (using PM model) is correct. The explanation of this phe-
nomenon is shown on an example of mutually exchanging AB
spin system.

4.1. Simulation of mutually exchanging coupled AB spin system

At the beginning the ‘static’ transitions of the exchanging sites
have to be determined. This is obvious in cases when there is no
coupling between the exchanging sites. However, for an AB spin
system the exchanging nuclei (A and B) are coupled to each other,
therefore their transitions depend on each other. Instead of sepa-
rating the two nuclei, the AB M BA mutual exchange is simulated
as a special case of AB M CD exchange where C = B and D = A.

As it was stated before, the MC-DNMR program gives wrong
results for high temperature spectra of mutually exchanging AB
spin systems [20]. The error can be analyzed by determining the
Fig. 3. Explanation of the spectrum simulated by MC-DNMR for a mutually
exchanging AB spin system. (a) Energy levels and frequencies (mp) of the AB spin
system at slow exchange. (b) Basis functions (Uk) and coherences (ue) showing the
exchange process. (c) Similar to (a) but for fast exchange (the energy levels of slow
exchange are shown in gray as reference).
behavior of each basis coherence in the simulation. Fast exchange
averages the two energy levels with Iz,tot = 0 (U2 and U3 on Fig. 3).
This does not mean that the two energy levels are converted into
each other by the exchanges. The basis states (U2 and U3) are
the ones converted into each other and thus the basis coherences
u1 and u2 are exchanging (and never remaining the same, see
Fig. 2), u3 and u4 do the same, but independently from the other
two. The exchange is mutual therefore the probabilities (or coeffi-
cients) are symmetrical and thus the common frequency is the
average of the possible frequencies. This means that m1 and m01
are averaged (as the basis coherences u1 and u2 are replacing each
other) and m2 and m02 are averaged as well (by the exchange of u3

and u4). The average of the first two frequencies (m1þm01
2 ) is higher

than that of the two latter (m2þm02
2 ). This results in a doublet instead

of a singlet for the high temperature spectrum (Fig. 4).
Fig. 4. Low and high temperature spectra simulated by MC-DNMR for a mutually
exchanging AB spin system.



Fig. 5. Temperature dependent spectra of a mutually exchanging AB spin system
calculated by (a) ProMoCS and (b) MEXICO. The parameters used for the simulation:
mA = 0.5 ppm (50 Hz), mB = �0.5 ppm (�50 Hz), J = 10 Hz, SI = 512. NS = 1000 for
ProMoCS.

Fig. 6. Structure of N,N-dimethyl-para-nitroso-aniline and numbering of simulated
protons.
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The PM based ProMoCS program does not separate the basis
transitions of the same level and it gives correct results for the high
temperature spectrum as well. The signal detected at a given time
can be calculated as a function of exchange times and the Hamilto-
nians of AB and BA conformer as:

fidðtÞ ¼ Iþ
� ��eiL1ðt�trÞeiL2Dtr�1 � . . . � eiL1Dt1 rð0Þj i; ð32Þ

where L1 and L2 are the Hamiltonians for AB and BA conformer (in
the Liouville space), Dti is the length of the i-th time slice (Dti =
ti+1 � ti), t is the time point of detection which is inside time slice
r (meaning tr < t < trþ1). In Eq. (32) L1 and L2 are matrices therefore
eiL1Dt1 eiL2Dt2 –eiL1Dt1þiL2Dt2 , but the difference is of order s2 which is
negligible in the case of small Dti [5]. For fast reactions Dti values
are small (for any value of i) and therefore Eq. (32) can be approx-
imated as:

fidðtÞ ¼ Iþ
� ��eiL1ðt�trÞþiL2Dtr�1þ...þiL1Dt1 rð0Þj i: ð33Þ

This approximation is valid even for finite exchange rates. The ex-
change in question is mutual therefore the time spent in conformer
AB equals to the time spent in BA and thus the sum in Eq. (33) can
be written in a shorter form:

fidðtÞ ¼ Iþ
� �� exp i

L1 þ L2

2
t

� �
rð0Þj i: ð34Þ

The Hamiltonian of the AB conformer in the Liouville space is (with
frequencies mA, mB and coupling constant J):

L1 ¼
mA � J

2
�J
2

�J
2 mB � J

2

 !
; ð35Þ

where the ± sign belongs to the total spin quantum number change
0 ? 1 and �1 ? 0. The L2 operator of the BA conformer is similar
just the role of A and B has to be swapped:

L2 ¼
mB � J

2
�J
2

�J
2 mA � J

2

 !
: ð36Þ

The average of the two operators needed in Eq. (34) is:

L1 þ L2

2
¼

mAþmB
2 � J

2
�J
2

�J
2

mAþmB
2 � J

2

 !
: ð37Þ

This operator is the same as the Hamiltonian of a common A2 spin
system (where the frequency is mAþmB

2 and the coupling constant is J)
with eigenvalues mAþmB

2 and mAþmB
2 � J the latter of which has zero

intensity. This results in a singlet in the high temperature spectrum
as expected. Fig. 5 shows the simulated spectra of a general AB spin
system simulated by ProMoCS and the average Hamiltonian based
MEXICO programs (the latter is handled as reference). The two ser-
ies of spectra fit well to each other.
Table 1
Spectral parameters used for the simulation of the temperature dependent 1H NMR
spectra of N,N-dimethyl-para-nitroso-aniline.

d/ppm J/Hz

d1 = 6.76 J1,2 = 9.1
d2 = 8.79 J2,3 = 2.1
d3 = 6.63 J3,4 = 9.5
d4 = 6.47 J1,4 = 2.5
5. Examples

The program was tested on several molecules. Here the exam-
ples of N,N-dimethyl-para-nitroso-aniline and trimethylsilylcyclo-
penta-[l]-phenantrene (Me3SicPPh) are shown. The spectra
simulated by ProMoCS will be compared with the ones simulated
by MEXICO using the same parameter set [21,23].

5.1. Coupled mutual exchange

The dynamic structure of N,N-dimethyl-para-nitroso-aniline is
shown on Fig. 6. The conformational exchange detailed here is the
syn-anti isomerism of the nitroso group. This reaction was studied
earlier and the kinetic and spectral parameters were fitted to the
experimental spectra [21]. The simulation to be shown here is com-
pared to the spectra simulated by the MEXICO. The parameters used
for the simulations are shown in Table 1 (as given in Ref. [21]).

The aromatic part of the spectra can be simulated taking into
account the four aromatic protons only as these are not coupled
to the methyl hydrogens. These four nuclei are scalar coupled to
each other and they are connected by the rotation around the C–
N(O) bound as well.

Spectra were simulated with SI = 512 points and NS = 1000
scans (the latter in ProMoCS). The middle of the spectra is at
7.5 ppm, spectrum width is 3 ppm. The 1H resonance frequency
was supposed to be 300 MHz. The simulated spectra fit well to
the reference ones as it is shown on Fig. 7.



Fig. 7. Simulated temperature dependent 1H NMR spectra of N,N-dimethyl-para-nitroso-aniline calculated by (a) ProMoCS and (b) MEXICO (1000 scans, SI = 512, LB = 2.0 Hz).
Simulations with ProMoCS were performed on a desktop PC with Intel Core-2 Duo 2.20 GHz processor and Windows XP operating system using two Java threads. Runtime for
all six temperatures was 48.6 s.

Fig. 8. Structure and numbering of hydrogens Me3
cPPh.
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5.2. A larger spin system

The chemical formula of Me3
cPPh is shown on Fig. 8. The pro-

cess in question is the migration of the Me3Si group from C1 to
C3. This mutual exchange reaction was studied earlier by dynamic
Fig. 9. Simulated temperature dependent spectra of Me3
cPPh (a) MEXICO and (b) ProMoC

desktop PC with Intel Core-2 Duo 2.20 GHz processor and Windows XP operating system
NMR and EXSY measurements [23] and the measured thermody-
namic data were DH++ = 63.6 kJ mol�1 and DS++ = 34.3 J K�1 mol�1.

Here the spectra of the eight spin system H4 to H11 were simu-
lated at five different temperatures (Fig. 9). Spectroscopic parame-
ters used for the simulation are shown in Table 2. The spin set H4 to
H7 is not coupled to other protons therefore the system can be sim-
ulated as four spins in two states: where the Me3Si is at position 1
(State 1) and at 3 (State 2) on Fig. 8. The spectra simulated fits well
to the reference in all cases again (Fig. 9).

6. Conclusions

The ProMoCS program presented here incorporates the Monte
Carlo simulation and the propagation of the time dependent den-
sity matrix. The two main processes of the spin system are handled
separately: the precession is simulated by means of the propagator
formalism while the exchange reaction rates are taken into account
statistically. The PM model for the explanation of the calculation
S. Simulations with ProMoCS (1000 scans, SI = 512, LB = 2.0 Hz) were performed on a
using two Java threads. Runtime for all five temperatures was 54.9 s.



Table 2
Chemical shift values (d) and coupling constants (J) used for the simulation of DNMR
spectra of Me3SicPPh [23].

State 1 State 2

d4/ppm 8.26 8.03
d5/ppm 7.66 7.60
d6/ppm 7.63 7.57
d7/ppm 8.76 8.73
J4,5/Hz 8.3 8.3
J4,6/Hz 1.5 1.8
J4,7/Hz 0.5 0.6
J5,6/Hz 6.8 6.7
J5,7/Hz 1.5 1.8
J6,7/Hz 8.3 8.3
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method is also shown indicating the connection with the previ-
ously introduced extension of the vector model to spin systems
with chemical exchange. The program based on this theory was
successfully tested for several molecules including a mutually
exchanging AB spin system.
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